Tetrachloro- μ-dichloro-tetrakis(tri-n-butylphosphine)dirhodium(III)

By James A. Muir, Mariel M. Muir and Amelia J. Rivera
Departments of Physics and Chemistry, University of Puerto Rico, Rio Piedras, Puerto Rico 00931

(Received 18 March 1974; accepted 18 April 1974)

Abstract

Rh}_{2}\left(\mathrm{PBu}_{3}\right)_{4} \mathrm{Cl}_{6}, \mathrm{Rh}_{2} \mathrm{P}_{4} \mathrm{Cl}_{6} \mathrm{C}_{48} \mathrm{H}_{108}\), is monoclinic, $C 2 / c, a=15 \cdot 70(5), b=20 \cdot 11(5), c=20 \cdot 91(6) \AA$, $\beta=102 \cdot 3(3)^{\circ}, Z=4, d_{x}=1 \cdot 24, d_{m}=1 \cdot 264 \mathrm{~g} \mathrm{~cm}^{-3}, V=$ $6450 \AA^{3}$. The two Rh atoms, each with octahedral coordination, lie on a twofold axis. The two phosphines on one Rh are cis to each other and trans to the bridging chlorines, while the two phosphines on the other Rh are trans to each other.

Introduction. Several different molecular structures have been proposed (Brown \& Green, 1970; Allen \& Gabuji, 1971: Intille, 1972) for complexes of the type $\mathrm{Rh}_{2}\left(\mathrm{PR}_{3}\right)_{4} \mathrm{Cl}_{6}$. Our single-crystal X-ray study establishes the correct structure when R is n-butyl. The compound was prepared by the method of Chatt, Johnson \& Shaw (1964) and recrystallized from ligroin and then several times from acetone. Nearly spherical red prismatic crystals were obtained from an acetone solution by slow evaporation of the solvent.

Experimental. A crystal of average radius 0.24 mm was mounted with the b axis parallel to the axis of rotation and the multiple-film equi-inclination Weissenberg method with Mo $K \alpha$ radiation was used to collect intensity data, which were estimated visually by comparison with a standard strip. Al foil was inserted between the films to give sufficient attenuation. Spots from adjacent layers, when present, were partially blocked by the layer-line screen, and so were easily distinguishable and provided no problems in indexing. In total, 1086 independent non-zero reflections were measured on layers $k=0$ to $k=10$, scaled according to exposure time, and checked by comparison with a 0 kl photograph for another crystal. Correction was made for spot-shape extension (Phillips, 1956) but not for absorption, since $\mu=8.5 \mathrm{~cm}^{-1}$ and the transmission factors varied only from 0.78 to 0.84 .

Systematic absences were $h k l$ for $h+k$ odd and $h 0 l$ for l odd, which indicated space groups $C c$ or $C 2 / c$ and the latter was chosen when statistical tests (Howells, Phillips \& Rogers, 1950) indicated a centrosymmetric space group. A three-dimensional Patterson synthesis revealed the locations of the Rh atoms in the fourfold special positions on the twofold axis at $0,0 \cdot 19, \frac{1}{4}$ and $0,0 \cdot 37, \frac{1}{4}$. Least-squares refinement and difference Fourier syntheses revealed the positions of the Cl, P, and C atoms. Refinement of the inter-layer scale factors, positions, and individual, isotropic tem-
perature factors for all of the non-hydrogen atoms gave an unweighted R value of $0 \cdot 122$. Additional cycles of refinement with anisotropic temperature factors for the Rh, Cl, and P atoms gave a weighted residual $R^{\prime}=\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|$ of $0 \cdot 104$. At this point considerable correlation was observed between inter-layer scale factors and anisotropic temperature factors. This problem was eliminated in the final refinement by fixing the U_{22} temperature factors for the P and Cl atoms at their isotropic values.
The δ carbons on three of the butyl chains showed evidence of disorder between two sites and could not be refined. These three carbon atoms were included as six half atoms in fixed atomic positions. The final weighted residual was $0 \cdot 098$. In the final cycle the average parameter shifted by 0.04 of its e.s.d. value [maximum 0.24 for the shift/e.s.d. of the y / b parameter of $\mathrm{C}(33)]$. The weighting scheme employed was $w=\left(2 F_{\text {min }}+F_{o}+\right.$ $\left.2 F_{o}^{2} / F_{\max }\right)^{-1}$, with $F_{\min }=26 \cdot 41$ and $F_{\max }=719 \cdot 4$. Neutral atom scattering factors (Cromer \& Mann, 1968) were used, except for Rh^{3+}, and were corrected for anomalous dispersion (Cromer \& Liberman, 1970). The atomic coordinates and thermal parameters are given in Table 1.*

[^0]

Fig. 1. View of molecular skeleton perpendicular to the twofold axis. For clarity, the butyl groups are not shown.

Table 1. Fractional coordinates and temperature factors

	$\quad \boldsymbol{y}$	z	
$\mathrm{Rh}(1)$	0	$0.1866(4)$	0.2500
$\mathrm{Rh}(2)$	0	$0.3728(4)$	0.2500
$\mathrm{Cl}(1)$	$0.0951(6)$	$0.2755(8)$	$0.2347(5)$
$\mathrm{Cl}(2)$	$0.1029(8)$	$0.1068(8)$	$0.2348(6)$
$\mathrm{Cl}(3)$	$-0.0713(8)$	$0.3760(7)$	$0.1407(6)$
$\mathrm{P}(1)$	$-0.0615(9)$	$0.1791(8)$	$0.1369(7)$
$\mathrm{P}(2)$	$0.1039(8)$	$0.4467(9)$	$0.2386(6)$

Anisotropic temperature factors ($\times 10^{3}$)						
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Rh}(1)$	17 (3)	33 (9)	35 (4)	0	14 (2)	0
$\mathrm{Rh}(2)$	20 (3)	76 (9)	25 (3)	0	4 (2)	0
$\mathrm{Cl}(1)$	59 (7)	$54 \dagger$	82 (9)	-8 (8)	9 (6)	-32 (8)
$\mathrm{Cl}(2)$	70 (9)	$69 \dagger$	96 (11)	-4 (9)	16 (8)	22 (8)
$\mathrm{Cl}(3)$	68 (9)	$69 \dagger$	77 (11)	-15 (8)	1 (8)	-1 (8)
$\mathrm{P}(1)$	80 (10)	$61 \dagger$	63 (11)	-10 (8)	11 (9)	0 (8)
P (2)	52 (8)	$58 \dagger$	78 (10)	-1 (9)	10 (7)	13 (8)
	x		y	z		$U_{\text {Iso }}$
C(11)	-0.004 (3)		$0 \cdot 214$ (3)	0.084 (2)		0.07 (1)
$\mathrm{C}(21)$	0.086 (3)		$0 \cdot 186$ (3)			0.08 (1)
C(31)	0.135 (5)		$0 \cdot 219$ (4)			$0 \cdot 17$ (3)
C(41)	$0 \cdot 112$ (5)		$0 \cdot 208$ (5)	-0.02		0.21 (4)
C(12)	$-0.079(3)$		0.093 (2)	$0 \cdot 10$		0.06 (1)
C(22)	-0.112		0.085 (2)	0.03		0.06 (1)
C(32)	$\begin{aligned} & -0.171 \text { (4) } \end{aligned}$		0.008 (3)	0.01		0.08 (2)
$\mathrm{C}(42)$			0.005 (4)	-0.06		$0 \cdot 15$ (3)
C(13)	-0.176 (2)		0.223 (3)	0.11		0.07 (1)
C(23)	-0.246 (3)		0.189 (3)	0.13		0.11 (2)
C(33)	-0.339 (4)		0.233 (3)	$0 \cdot 10$		$0 \cdot 14$ (2)
C(431)	-0.415		$0 \cdot 189$	$0 \cdot 11$		$0 \cdot 11 \ddagger$
C(432)	-0.349		0.240	$0 \cdot 02$		$0 \cdot 11 \ddagger$
C(14)	0.096 (3)		0.485 (3)	$0 \cdot 15$		0.09 (2)
C(24)	$0 \cdot 124$ (3)		$0 \cdot 430$ (3)	$0 \cdot 11$		$0 \cdot 10$ (2)
C(34)	$0 \cdot 104$ (4)		$0 \cdot 450$ (3)	0.03		$0 \cdot 13$ (2)
C(441)	$0 \cdot 132$		$0 \cdot 512$	0.02		$0 \cdot 13 \ddagger$
C(442)	$0 \cdot 125$		0.390	-0.00		$0 \cdot 13 \pm$
C(15)	$\begin{aligned} & 0.212 \text { (3) } \\ & 0.292 \text { (3) } \end{aligned}$		0.407 (2)	0.26		0.06 (1)
C(25)			0.456 (2)	$0 \cdot 25$		0.08 (2)
C(35)	0.388 (4)		0.419 (3)	$0 \cdot 26$		$0 \cdot 12$ (2)
C(451)	$0 \cdot 415$		$0 \cdot 379$	$0 \cdot 32$		$0 \cdot 14 \ddagger$
C(452)	0.374		0.378	0.19		$0 \cdot 14 \ddagger$
C(16)	0.107 (3)		0.521 (3)	0.28		0.09 (2)
C(26)	$0 \cdot 141$ (3)$0 \cdot 150$ (4)		0.586 (2)	$0 \cdot 26$		0.06 (1)
C(36)			0.642 (3)	0.32		$0 \cdot 10$ (2)
C(46)	$0 \cdot 159$ (5)		0.713 (5)	$0 \cdot 29$		$0 \cdot 20$ (3)

$\dagger U_{22}$ fixed at the isotropic value.
\ddagger Disorder is represented by two atoms of site occupation factors 0.5 with fixed positions and U.

Discussion. The coordination about the two Rh atoms and the atom numbering scheme are shown in Fig. 1. Each carbon chain n is numbered from $1 n$ to $4 n$ starting from the P atom, so that $\mathrm{C}(32)$ is the third or γ carbon in the second chain. Chains one to three are on $\mathrm{P}(1)$ and four to six on $\mathrm{P}(2)$. The heavy atoms all lie very close to one or both of the planes $(-0 \cdot 1708 x-$ $0 \cdot 9853 z+4 \cdot 8423=0)$ and $(0 \cdot 9722 x-0 \cdot 2341 z+2 \cdot 2780=$ 0). The Rh atoms, bridge Cl atoms, $\mathrm{Cl}(2), \mathrm{Cl}\left(2^{1}\right), \mathrm{P}(2)$ and $\mathrm{P}\left(2^{i}\right)$ are within $0.058 \AA$ of the first plane and the Rh atoms, $\mathrm{Cl}(3), \mathrm{Cl}\left(3^{1}\right), \mathrm{P}(1)$, and $\mathrm{P}\left(1^{1}\right)$ are within
$0.093 \AA$ of the second plane. The angle between the planes is 86.3°. The distance $\mathrm{Rh}(1)-\mathrm{Rh}(2)$ is $3.745(15)$ \AA.

The structure is in accord with the large dipole moment (Chatt et al., 1964) and with the n.m.r. data of Allen \& Gabuji (1971).
The differences between the various $\mathrm{Rh}-\mathrm{P}$ and $\mathrm{Rh}-\mathrm{Cl}$ bond lengths are all in agreement with a trans effect for P larger than that for Cl . The distances from $\mathrm{Rh}(2)$ to $\mathrm{Cl}(1)$ and $\mathrm{Cl}\left(1^{1}\right)$, which are trans to $\mathrm{P}(2)$ and $\mathrm{P}\left(2^{\mathrm{i}}\right)$, are greater than any of the distances from Rh to those Cl atoms which are trans to Cl . Similarly, $\mathrm{P}(2)$, which is trans to a Cl, is closer to $\mathrm{Rh}(2)$ than is $\mathrm{P}(1)$, which is trans to a P , to $\mathrm{Rh}(1)$. The labilizing effect of $\mathrm{P}(2)$ and $\mathrm{P}\left(2^{\prime}\right)$ on the bonds between $\mathrm{Rh}(2)$ and the bridge Cl atoms has been observed (Muir \& Fernandez, 1974) in kinetic studies in which unsymmetrical cleavage occurs with amines.

The disorder in some of the butyl chains and relatively large e.s.d. values and temperature factors for γ and δ carbon atoms are not unreasonable for a compound with long aliphatic chains. Average bond lengths (\AA) with their respective average e.s.d.'s are: $\mathrm{P}-\mathrm{C}(\alpha) 1 \cdot 84(2) ; \mathrm{C}(\alpha)-\mathrm{C}(\beta) 1 \cdot 53(3) ; \mathrm{C}(\beta)-\mathrm{C}(\gamma) 1 \cdot 60(3)$; $\mathrm{C}(\gamma)-\mathrm{C}(\delta) 1 \cdot 52(3)$. Average bond angles $\left({ }^{\circ}\right)$ with their average e.s.d.'s are: $\mathrm{Rh}-\mathrm{P}-\mathrm{C}(\alpha) 114 \cdot 3(7)$; $\mathrm{C}(\alpha)-\mathrm{P}-\mathrm{C}(\alpha)$ 104-2(9); $\mathrm{P}-\mathrm{C}(\alpha)-\mathrm{C}(\beta) 115(1) ; \mathrm{C}(\alpha)-\mathrm{C}(\beta)-\mathrm{C}(\gamma) 112(2)$; $\mathrm{C}(\beta)-\mathrm{C}(\gamma)-\mathrm{C}(\delta) 110(2)$. The average for all $\mathrm{C}-\mathrm{C}$ bonds was $1 \cdot 54(7) \AA$ and for all $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles was $110(4)^{\circ}$.

We thank Mrs S. Fernandez for preparation of the compound. Computer programs used included local versions of Zalkin's FORDAP and Busing, Martin \& Levy's ORFLS and ORFFE. Calculations were carried out on the University of Puerto Rico IBM 370/155 computer. Final refinement was carried out on the Cambridge University IBM 370/165 computer, using programs written by Dr G. M. Sheldrick, to whom we are grateful for helpful discussions.

References

Allen, F. H. \& Gabuii, K. M. (1971). Inorg. Nucl. Chem. Lett. 7, 833-836.
Brown, T. H. \& Green, P. J. (1970). J. Amer. Chem. Soc. 92, 2359-2362.
Chatt, J., Johnson, N. P. \& Shaw, B. L. (1964). J. Chem. Soc. (A), pp. 2508-2513.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1896.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-323.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210-214.
Intille, G. M. (1972). Inorg. Chem. 11, 695-702.
Muir, M. M. \& Fernandez, S. C. (1974). In preparation.
Phillips, D. C. (1956). Acta Cryst. 9, 819-821.

[^0]: * A list of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30441 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

